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This article reports tests of aggregation over consumer food products and estimates of aggregate food
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Appropriately specified models of consumer
demand are central to market analysis. It
has been established that a valid equilibrium
for markets characterized by diverse firms
or diverse consumer products depends on
downward-sloping composite demand curves
(Heiner, Braulke, Wohlgenant) or on valid
indirect utility functions (Chavas and Cox).
Given the large number of consumer food
products, food demand and price analysis must
be implemented at some level of product ag-
gregation. Improper aggregation can lead to
biased estimates of welfare loss associated with
public policies, biased estimates of consumer
and derived demand elasticities, and mislead-
ing tests of market power. Testing for con-
sistent aggregation over food products and
estimating aggregate consumer food demand
elasticities are the subjects of this article.

By far, the most common justification for
aggregation has been separable preferences.
One reason for its popularity has been the
lack of a viable alternative. Tests of the Com-
posite Commodity Theorem (Hicks, Leontief,
Lewbel) are always rejected because it restricts
relative prices within a group to remain fixed
over time. On the other hand, aggregation
based on weak separability is often rejected
(Diewert and Wales, Eales and Unnevehr).
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The Generalized Composite Commodity
Theorem (GCCT) justifies aggregation un-
der milder conditions (Lewbel). It relaxes the
restriction of constant relative prices within
groups by strengthening the requirement that
independence holds across all groups. Further-
more, the GCCT simplifies tests for weakly
separable preferences.

This article tests for valid aggregation of
consumer food products and reports estimates
of food demand elasticities. As in previous
studies, we find evidence that food demand
variables contain unit roots, so tests for valid
aggregates involve tests for spurious regres-
sions. By building on the methodology found
in previous studies we simplify tests for valid
aggregation. In addition, we present esti-
mates of food demand elasticities and tests
for weak separability based on recent develop-
ments in the theory of nonlinear nonstationary
regressions.

Theory

The GCCT is a stochastic theory of aggrega-
tion over diverse consumer products. It main-
tains that n elementary share equations are
functions of logged elementary prices, r, and
logged income, z. Following Lewbel, let wi (i =
1, . . . , n) denote the ith elementary bud-
get share and let E denote the mathemati-
cal expectations operator. Then gi:(r, z) →
wi (i = 1, . . . , n) such that

wi = gi (r, z) + ei where

E(ei | r, z) = 0 ⇒ E(wi | r, z) = gi (r, z).

(1)
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Since the gi form a valid elementary demand
system, they satisfy adding-up (

∑
gi = 1), ho-

mogeneity (gi(r − k, z − k) = gi(r, z) for
all i), and Slutsky symmetry (i.e., (∂gk/∂rj) +
(∂gk/∂z)gj = (∂gj/∂rk) + (∂gj/∂z)gk). The
compensated demands satisfy negative semi-
definiteness.

The theory also maintains the existence of
a system of stochastic composite share equa-
tions. The M(< n) composite shares WI ≡∑

i∈I wi (I = 1, . . . , M) are functions of logged
income z and logged composite prices R, or GI:
(R, z) → WI (I = 1, 2, . . . , M). In particular,

WI = G I (R, z) + uI where

E(uI | R, z) = 0 ⇒ G I (R, z) = E(WI | R, z).

(2)

The orthogonality of the model errors of (1)
and (2) ensure that gi(r, z) and GI(R, z) are
optimal predictors of elementary and compos-
ite shares, respectively.

These model errors are related. Following
Lewbel, let G∗

I (r, z) denote the sum of the con-
ditional means of the elementary demands for
group I, so that G∗

I (r, z) ≡ ∑
i∈I gi (r, z). Also

define � i ≡ ri − RI as the ith relative price so
the vector of all relative prices is � = r − R∗
where R∗ denotes the n-vector of group prices
with RI in row i and in every row i ∈ I. This
implies

uI =
∑
i ∈ I

ei + G∗
I (� + R∗, z) − G I (R, z)(3)

which shows the composite model errors are
correlated with relative elementary prices.

Lewbel shows that valid aggregation is ob-
tained when the vector of all relative prices
is distributed independently of the vector of
composite prices and income. This implies

G I (R, z) =
∫

G∗
I (R∗ + �, z) dF(�)(4)

which states that the conditional expectation
of the Ith composite share equals an uncondi-
tional expectation of sums of the elementary
demand functions in the Ith composite. Lew-
bel uses (4) to obtain three results that relate
directly to demand system estimation. First,
GI(R, z) (I = 1, 2, . . . , M) is a valid system of
composite demand equations because this sys-
tem inherits the adding up, homogeneity, and
nearly (or in some cases exactly) inherits Slut-
sky symmetry from the elementary demands.
Second, the demand elasticities of GI(R, z) are
best, unbiased estimates of within-group sums
of elementary demand elasticities. Third, (3)

and (4) imply that (G∗
I − GI) is a bias term

that arises from aggregation and this term is
a function of �. Because uI contains this bias,
the errors of a composite demand system jus-
tified by the GCCT will be correlated with rel-
ative prices. If instead the demand system is
based on weakly separable preferences, G∗

I =
GI so uI = ∑

i∈I eI and composite demand er-
rors will not be correlated with relative prices.

In time series theory, the restriction that �t
is distributed independently of qt ≡ [R′

t, zt]′
imposes restrictions on the correlation of an
infinite number of random variables. For ex-
ample, if �t and qt are in-deterministic station-
ary processes they would satisfy

�t =
∞∑

s = 0

C s V t−s and qt =
∞∑

s = 0

Ds V t−s

where
∑∞

s=0 |C s | < ∞,
∑∞

s=0 |Ds | < ∞, and
(VtU t) are iid normal with mean zero. In this
case independence requires E(VtUs) = 0 for
all t, s. An implication of vector independence
is E(�t | qt) = E(�t) or that qt provides no in-
formation about �t. These restrictions may be
difficult or impossible to test.

This may be why tests of the GCCT have
focused on tests for linear relationships. If P
denotes the linear projection operator, valid
aggregation means P(�t | qt) is not a linear
function of qt and failure to reject such tests
is taken as support for valid aggregation
(Lewbel; Davis; Davis, Lin, and Shumway;
Asche, Bremmes, and Wessells). Because evi-
dence has suggested �t and qt are often unit
root processes, aggregation tests have been
based on tests of spurious regressions.

Phillips shows that a simple linear regres-
sion constructed from two independently dis-
tributed and integrated time series behaves
like a model constructed from two non-
cointegrated series. That is, Phillips shows cor-
relation between the stationary components
of the two series will not affect the asymp-
totic behavior of the regression. It is significant
for our work that Phillips extends this result
to multiple regression models, so that if � it =
P(� it | qt) + vit is a spurious regression, the
model behaves as though � i is distributed in-
dependently of qt. This suggests tests of the
GCCT that have been based on a large number
of simple regression models can be simplified
by basing them instead on multiple regression
models.

In particular, if qt is an integrated vector we
can, in a straightforward manner, compute a
test of the aggregation scheme. An approach is
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to compute Engle-Granger tests of no cointe-
gration for each of the individual � i multiple re-
gressions for which � i is an integrated variable,
and then follow Davis, Lin, and Shumway. That
is, based on the individual tests use the Holm
procedure to test the family-wise hypothesis
that each integrated element of � is jointly
spuriously related to q. This approach differs
from the “grand test” proposed by Davis be-
cause it represents a test of the null of valid
aggregation. Moreover, our reading of Huang
leads us to conclude that the power problems
associated Engle-Granger tests are no more
severe for regressions with a large number of
regressors than they are for a small number of
regressors.

A finding of valid aggregation means a
composite demand system is associated with
this aggregation scheme. Moreover, if demand
variables follow unit root processes, we ex-
pect the demand equations to be cointegrated
(Karagiannis and Mergos). Because of the in-
terest in demand elasticities, and because a
number of useful functional forms used in
empirical demand work are nonlinear, it is de-
sirable to apply cointegration methods to non-
linear demand systems.

Cointegration and Nonlinear Share
Equation Systems

We maintain that composite shares of a valid
demand system are adequately described by
the semi-flexible almost ideal (SAI) demand
system (Moschini). The SAI demand system is
a re-parameterization of the Almost Ideal (AI)
demand system (Deaton and Muellbauer).
Thus, it describes nonlinear Engle curves, de-
fines community income and exact nonlinear
aggregation over consumers, and defines bud-
get shares and income elasticities for income
inelastic goods, such as food, that decline as in-
comes rise (Moschini). Moreover, the SAI de-
mand system saves degrees of freedom while
maintaining curvature at a point in the data. In
this section we show that a version of the non-
linear SAI demand system can be estimated
using cointegration methods.

Recall that WI denotes the Ith composite
consumer budget share, z the log of income,
and RJ the log of the Jth composite price. If
we let ei denote the Ith model error, the AI
model is

WI = �I +
M∑

J=1

�IJ RJ + �I (z − log P)

+ eI (I = 1, . . . , M)

(5)

log P = �0 +
M∑

I=1

�I RJ + 1/2
M∑

I=1

M∑
J=1

RI RJ(6)

with Slutsky-substitution terms

SIJ = [x/(pI pJ )][�IJ + WI WJ − �IJwI

+ �I �J (z − log P)]

(7)

where �IJ = 1 for I = J and �IJ = 0 for I �= J.
Moschini notes that if �0 = 0 and price and
income variables are deflated by their sample
means, then at the sample mean pI = x = 1, �I is
the Ith budget share, εIJ = (1/�I)(� IJ −�I�I)−
�IJ is a cross-price elasticity of demand, �I =
(�I /�I) + 1 is the income elasticity of demand,
and the Slutsky substitution terms are

�IJ = �IJ + �I �J − �IJ�I .(8)

The SAI model can be used to estimate de-
mand elasticities conditioned on curvature im-
posed at the mean (or any other point) of the
data. By setting Θ = [�IJ] = −T′T where T
= [� IJ] is upper triangular and Θ is less than
full rank, Moschini restricts the rank of Θ by
setting the last number of rows equal to zero.
For example if Θ is a 5 × 5 matrix, setting the
last two rows of T to zero restricts Θ to a ma-
trix of rank three. Such restrictions allow the
parameters of

WI = �I + �I RI − �I

M∑
J=I

�J RJ

−
I∑

S=I

�SI RJ

M−I∑
J=S

�S J (RJ −RM )

+ �I z − �I log P

+ eI (I = 1, . . . , M − 1)

(9)

log P =
M∑

J=1

�J RJ − 1/2

[
M∑

J=1

�J RJ

]2

+ 1/2
M∑

J=1

�J (RJ )2

− 1/2
M−1∑
S=1

[
M−1∑
J=S

�s J (RJ −RM )

]2

(10)

identify the parameters of (5) and (6).
Equations (9) and (10) represent the SAI de-
mand model.
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The task is to estimate this nonlinear sys-
tem assuming each share equation is an inte-
grated regression with stationary model errors.
The estimator developed by Chang, Park, and
Phillips applies to a class of nonlinear, single
equation cointegrated models. To describe this
class in detail, let (9) be represented as

Wt = � + q(xt , �) + et(11)

where x′
t = [x1t, x2t, . . . , xkt] is a k-vector of inte-

grated stochastic regressors. Chang, Park, and
Phillips show their estimator applies to non-
linear models such as (11) when model errors
are serially uncorrelated (i.e., et is a martingale
difference series) and q(xt, �) satisfies additive
separability. They show that if q(xt, �) consists
of k additive terms for � = [�′

1, �′
2, . . . , �′

k],
additive separability requires

q(xt , �) =
k∑

i=1

qi (xit , �i ).

Thus, additive separability permits only one in-
tegrated regressor per additive term.

For an SAI demand equation, it is seen that
if log P could be treated as one integrated re-
gressor, (9) would satisfy additive separability.
The problem lies with log P. With the excep-
tion of the first term, every term in (10) in-
volves two integrated variables, so (9) and (10)
violate additive separability. However, the ap-
proximation (Deaton and Muellbauer)

log P ≈
M∑

J=1

WJ RJ(10′)

does treat log P as a single variable so (9)
and (10′) satisfy additive separability. Moschini
notes that (9) and (10′) represent a valid form
of the SAI model, and demand system estima-
tion in this study is based on (9) and (10′).

For integrated regressions, cointegration
does not ensure econometric exogeneity. The
consequence for estimation of linear, single
equation cointegrated regresssions is that or-
dinary least squares (OLS) estimates are bi-
ased and even though cointegration means
this bias disappears in large samples this bias
injects nuisance parameters into the distri-
butions of OLS estimates. The result is that
standard t- and F-tests are misleading even
in large samples. When econometric exo-
geneity is achieved, the bias and the nui-
sance parameters disappear so that OLS es-
timates are normally distributed, and t- and

F-tests provide correct inference. The fully
modified (FM) estimator transforms single
equation linear models in such a way that the
transformed model satisfies econometric exo-
geneity (Phillips and Hansen).

Chang, Park, and Phillips show similar is-
sues generally arise in nonlinear cointegrated
regressions, and so derive an FM estimator for
single nonlinear cointegrated regressions. To
describe their estimator, it is asssumed that
model errors of (11) form a martingale differ-
ence series and the regression function, q, sat-
isfies additive separability. Let �xt = vt and
E(vt ) = 0 so [etvt ] form a linearly indetermin-
istic stationary vector. The covariance generat-
ing function (evaluated at frequency 1) of this
vector is[

Σ11Σ12

Σ21Σ22

]
=

∞∑
k=−∞

[
E(et e′

t−k)E(etv
′
t−k)

E(vt e′
t−k)E(vtv

′
t−k)

]
.

Since vt is a stationary, serially correlated se-
ries, it satisfies vt = ∑∞

i=0 	iεt− j where εt is a
serially uncorrelated iid vector process with∑∞

i=0 |	i| < ∞. If the model errors are also
stationary and serially correlated they satisfy
et = ∑∞

i=0 
i� t−i with
∑∞

i=0 |
i| < ∞ (where � t
may be contemporaneously but not serially
correlated with εt). In this case

Σ12 =
∞∑

k=−∞
E(etv

′
t−k)

=
∞∑

k=−∞
E

( ∞∑
i=0


i �t−i

)

×
( ∞∑

j=0

	j εt− j−k

)
�= 0

means exogeneity is violated. However, for se-
rially uncorrelated errors 
i = 0 for i > 0, and

Σ12 =
∞∑

k=−∞
E(et jv

′
t−k)

=
∞∑

k=−∞
E(
0�t )

( ∞∑
j=0

	j εt− j−k

)

= E(
0	(1)�t εt )

= E(et jvt ) ≡ Σ0
12

where 	(1) = �∞
j=0	 j . Hence violations of

econometric exogeneity arise in models with
serially uncorrelated errors only because of the
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presence of contemporaneous correlation be-
tween et and vt . Define Σ0

22= E(vtvt )′ so that
subtracting Σ0

12(Σ0
22)−1vt from both sides of

(11) gives

W ∗
t = � + q(xt , �) + e∗

t(11′)

where W ∗
t = Wt − Σ0

12(Σ0
22)−1vt , e∗

t = et −
Σ0

12(Σ0
22)−1vt so that

∞∑
k=−∞

E
(
e∗

t vt−k
)

= E(etv
′
t ) − Σ0

12

(
Σ0

22

)−1
E(vt ,v

′
t )

= Σ0
12Σ

0
12 = 0

and econometric exogeneity obtains. This
means nonlinear least squares (NLS) estimates
of (11′) are consistent, efficient, and normally
distributed. Furthermore, consistent estimates
of Σ0

12 and Σ0
22 obtain by applying NLS to (11)

in the first stage. Chang, Park, and Phillips refer
to this estimator as the efficient nonstationary
nonlinear least squares (EN-NLS) estimator.

To estimate demand elasticities of an SAI
demand model using the EN-NLS estimator,
it must be expanded to a systems estimator. It
should be recognized that when estimating sys-
tems of cointegrated regressions, a violation of
econometric exogeneity means SUR or non-
linear SUR (NSUR) yield inconsistent esti-
mates.1 The implication for FM system estima-
tion is that single-equation estimators such as
OLS, NLS, or EN-NLS rather than multivari-
ate estimators such as SUR or NSUR must be
used in estimating the model in the first stage.
The SUR or NSUR estimator is then applied
to the transformed model in the second stage.

More specifically, represent the M − 1 SAI
composite demand equations as

WJt = �J + qJ (xt , �J )

+ eJt (J = 1, 2, . . . , M − 1)

(12)

where WJt is the Jth composite budget share
in time t, xt is a vector of integrated prices
and income, qJ is additively separable, eJt is
the Jth element of the M − 1 vector et which
is drawn from a martingale difference series.

1 The reason is for a system of cointegrated regressions with
correlation across the model errors and nonzero correlation with
the regressors, information on unit root variables in the system
is transmitted to the equations across the system and the SUR
estimator does not weight that information properly. The result is
a bias term associated with a SUR or NSUR estimator that may
not disappear asymptotically (Park and Ogaki).

Let vt = ∆xt , denote the vector of first differ-
ences of non-redundant regressors in the sys-
tem with E(∆xt) = 0. Since vt is a stationary
vector series, it satisfies vt = ∑∞

i=0 	i εt− j and
in general et satisfies et = ∑∞

i=0 Pi � t− j . But be-
cause E(et | et−1, et−2, . . .) = 0, Var(e) = PoΛP ′

o
whereΛ= E(� t � t

′) so et = Po� t where � t is a se-
rially uncorrelated iid vector process that can
be contemporaneously but not serially corre-
lated with εt. Then

Σ12 = Σ∞
k=−∞E(etv

′
t−k)

=
∞∑

k=−∞
E(P0�t )

( ∞∑
j=0

	j εt− j−k

)

= E[P0�t 	(1)εt ] = E(etvt ) ≡ Σ0
12

and violation of strict econometric exogene-
ity in a system of cointegrated regressions de-
rives only from the presence of contempo-
raneous correlation between et and vt when
model errors are serially uncorrelated. Define
Σ0

22 = E(vtvt )′ and let �
(J)
120 represent the Jth

row of Σ0
12 so that subtracting �

(J)
120 (Σ0

22)−1vt

from (12) gives

W ∗
J t = �J + qJ (xt , �J )

+ e∗
J t (J = 1, 2, . . . , M − 1)

(12′)

where W ∗
Jt = WJt − w

(J )
12 (Σ0

22)−1vt and e∗
Jt =

eJt − �
(J )
120(Σ0

22)−1vt . This means

∞∑
k = −∞

E(e∗
J tv

′
t )

= E(eJtv
′
t ) − �

(J )
120

(
Σ0

22

)−1
E(vtv

′
t )

= �
(J )
120 − �

(J )
120 = 0

and econometric exogeneity is achieved. This
means that given consistent estimates of Σ0

12
estimates of � from (12′) are consistent and
normally distributed. It should be noted this
nonlinear estimator takes the same form as the
FM estimator for linear systems (Moon).

There are two more points worth men-
tioning. First, it is well known that because∑M

J=1 WJt = 1, the error covariance matrix is
singular and the model is estimated using M −
1 equations (Berndt and Savin). When cross-
equation restrictions are imposed in the first
stage of a mean distance estimator (e.g., SUR)
as they are for the SAI model, the estimates
will not be invariant to the omitted equation
unless one uses a first-stage-weight matrix that
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treats equations symmetrically (see Chavas
and Sergerson). The problem is these matri-
ces contain nonzero off diagonal elements and
this leads to inconsistent estimates of cointe-
grated systems for the same reasons SUR or
NSUR yields inconsistent estimates (see foot-
note). In this study we use the identity as the
first-stage-weight matrix, and recognize the es-
timates are consistent but not invariant to the
equation omitted.

Second, Chavas and Sergerson note that if
the model errors are included in the specifi-
cation of share equations, as they are in (12),
they also enter the indirect utility function and
so can lead to heteroskedastic errors. They
recommend applying a GLS transformation
that accounts for heteroskedasticity prior to
estimation. However, cointegration theory is
based on a data-generating process in which
partial sums are distributed like continuous
time, Brownian motion variables (Phillips and
Durlauf). This automatically allows for het-
eroskedastic errors, so the only transforma-
tions that are necessary are those ensuring
econometric exogeneity.

Empirical Results

This section reports a test of valid aggre-
gation of nineteen elementary at-home food
products, estimates of composite food demand
elasticities, and tests for weakly separable
preferences.

We propose the nineteen food products be
aggregated into the following five at-home
food composites. The cereal and bakery com-
posite includes all cereal and bakery products.
The meat composite includes beef, pork, other
meat, poultry, and fish and seafood. The dairy
composite includes fluid milk, butter, cheese,
and ice cream. The fruit and vegetable compos-
ite includes fresh fruit, fresh vegetables, and
processed fruit and vegetables. The other food-
at-home composite includes sugar and sweets,
fats and oils, nonalcoholic beverages, eggs, and
miscellaneous foods. Food-away from home
and nonfood are treated as valid composites.

Estimates of U.S. quarterly budget shares,
after-tax income, and community income
are computed from 1982.1 to 2000.4 using
weighted sums of household expenditures re-
ported in the diary section of the Consumer
Expenditure Survey (CES) (U.S. Department.
of Labor), with weights supplied by the CES.
Quarterly after-tax income is constructed as
the U.S. annual estimate divided by four, and
nonfood expenditure is the difference between

the quarterly after-tax income and the sum
of away-from-home and at-home food expen-
ditures. The quarterly budget share for the
Ith composite, wI , is computed as the ratio
of the expenditure for the ith good-to-after
tax income. If xh denotes the (weighted) to-
tal expenditures for household h and kh de-
notes the number of members in household
h, then community income (per capita) associ-
ated with PIGLOG preferences (Muellbauer)
is x0 = exp[

∑
h xh log(xh/kh)/

∑
h xh]. If mx de-

notes the sample mean of x0, z ≡ log (x0/mx) is
used in estimation.

Quarterly Laspeyres price indices
(1982–84 = 1.0), PJ , J = 1, . . . , 5 are con-
structed for the five at-home categories using
the nineteen elementary prices, pj, with
expenditure weights constructed from the
expenditure data. Logs of mean-deflated
prices are used in testing and estimation.
Specifically, if MJ denotes the sample mean
of PJ and mj denotes the sample mean of
pj, then the Jth log mean-deflated composite
price is log(PJ/MJ) ≡ RJ and the jth relative
elementary price is log (pj/mj) − RJ ≡ � j for
every j 
 J.

Table 1 reports unit root tests on relative
prices, composite prices, and community in-
come. They indicate that at the � = 0.10 level
of significance most of the twenty-seven ele-
ments of �, R, and z follow unit root processes.
Both the Dickey-Fuller and the Kwaitkowski
et al. tests suggest that community income, six
of the seven composite prices, and nine rela-
tive prices follow unit root rather than trend
stationary processes. Both tests also suggest
the relative price of beef is trend-stationary.
The tests conflict for the dairy price index and
the remaining nine relative prices. A test of
the Joint Confirmation Hypothesis (JCH) of
a unit root (Silvestre, Rossello, and Ortuno)
confirmed the presence of a unit root in the
dairy price index and in six of those remain-
ing nine relative prices. A unit root could not
be confirmed for the relative prices of butter,
fresh vegetables, and eggs, and so these rel-
ative prices are considered trend stationary.
The results in table 1 suggest unit root pro-
cesses generate all composite prices, commu-
nity income, and fifteen of the nineteen relative
prices.

Table 2 reports the Engle-Granger test
statistics (Tk) for each of the fifteen integrated
relative price regressions. Each is specified
as a function of an intercept, a time trend,
community income, the five food-at-home, the
away-from home, and the nonfood price in-
dices. With the exception of processed fruits



34 February 2005 Amer. J. Agr. Econ.

Table 1. Unit Root Tests of Income and Group and Relative Prices

Null Hypotheses I(1) � � I(0) �� | I(1) or I(0)?

R (Cereal and bakery) −1.611 (8) 0.237 (6)∗ I(1)
� (cereal) −1.428 (8) 0.261 (6)∗ I(1)
� (bakery) −1.487 (8) 0.260 (6)∗ I(1)

R (Meat) −0.967 (5) 0.205 (6)∗ I(1)
� (beef ) −3.246 (8)∗ 0.116 (6) I(0)
� (pork) −3.014 (6) 0.102 (5) I(1) (JCH)
� (other meat) −2.206 (5) 0.185 (6)∗ I(1)
� (poultry) −2.519 (6) 0.089 (5) I(1) (JCH)
� (fish and seafood) −2.152 (6) 0.136 (6)∗ I(1)

R (Dairy) −2.217 (6) 0.077 (6) I(1)
� (fluid) −2.575 (3) 0.112 (6) I(1) (JCH)
� (butter) −4.639 (8)∗ 0.201 (6)∗ I(0) (JCH)
� (cheese) −1.186 (2) 0.208 (6)∗ I(1)
� (ice cream) −2.678 (3) 0.111 (6) I(1) (JCH)

R (Fruits and vegetables) −1.751 (5) 0.152 (6)∗ I(1)
� (fresh fruit) −1.914 (6) 0.190 (4)∗ I(1)
� (fresh vegetables) −3.159 (8) 0.068 (1) I(0) (JCH)
� (proc. fruit & veg) −3.104 (8) 0.118 (1)∗ I(1)

R (Other food at home) −1.636 (7) 0.124 (6)∗ I(1)
� (sugar and sweets) −2.266 (6) 0.118 (6) I(1) (JCH)
� (fats and oils) −3.389 (5)∗ 0.146 (6)∗ I(1) (JCH)
� (nonalcoholic bev) −2.153 (2) 0.164 (6)∗ I(1)
� (eggs) −2.562 (6) 0.054 (5) I(0) (JCH)
� (miscellaneous foods) −2.160 (8) 0.180 (6)∗ I(1)

R (Food away from home) −1.847 (5) 0.290 (6)∗ I(1)
R (Nonfood) −0.928 (3) 0.239 (6)∗ I(1)
z (Income) −1.551 (8) 0.194 (4)∗ I(1)
10% critical values: � ∗

� = −3.167 �∗
� = 0.119 (� � , �� )∗ = (−3.601, 0.073)

Notes: Asterisk (∗) denotes rejection of the null at the 0.10 level of significance. The test statistics of the null hypothesis of I(1) (�� ) are the augmented
Dickey and Fuller (1979) (ADF) t-values of the coefficient on the lagged level variable in the regression of the first-differences on a constant, a time
trend, the lagged level, and lagged-differences of variables appended to the regression. The number of lags of first differences is reported in parentheses
and determined by SHAZAAM 7.0. The second column (�� ) reports test statistics developed by Kwaitkowsi et al. (KPSS). They are sums of squared
partial sums of residuals divided by an error variance estimator. The residuals are computed from a model in which the series is regressed on a constant
and a time trend, and the error variance estimator is a Bartlett kernel weighted-sum of auto-covariances, with the automatic (Newey-West) bandwidth
parameter reported in parentheses. The third column reports inference based on the Joint Confirmation of a Unit Root, and is used when the tests
in the first and second columns conflict (Silvestre, Rossello, and Ortuno). The joint critical values (−3.601, 0.073) represent the midpoint of critical
values for fifty and hundred observations for the ADF and the KPSS (with Bartlett kernel) tests with trend. They are interpreted as follows. If the
value of the ADF statistic (column 2) is less (greater) than –3.601and the value of the KPSS statistic (column 3) is less (greater) than 0.073 then the se-
ries is considered (at the 0.90 level) stationary (integrated). Otherwise the series cannot be confirmed to be a unit root and is therefore considered to be stationary.

and vegetables, the each individual test failed
to reject the null of spurious regression. Fol-
lowing Davis, Lin, and Shumway the family-
wise test statistic of no cointegration is max
|Tk| = 5.989. For a 10% family-wise signifi-
cance level, the (0.10/15) critical point of the
distribution of this statistic under the null of
no cointegration for each of the tests and
for seventy-six observations is T∗ = 6.952
(MacKinnon). Since max |Tk| < T∗, the tests
fail to reject the aggregation scheme. This sug-
gests composite demand elasticities for this
scheme accurately reflect the elasticities for
the products that consumers actually purchase
(Lewbel).

The system estimates are computed in three
steps. First, compute estimates of Σ0

12 and Σ0
22

by applying the NSUR estimator to the sys-
tem using the M − 1 identity matrix as the
weight matrix in the first stage. Specifically,
denote the first-stage residuals as rt =
[r1t, . . . , rM−1,t], and the vector of first dif-
ferences of nonredundant regressors (with
drift removed) as vt . From these com-
pute the contemporaneous covariance matrix,
S 0

22 = (1/T )Σv∗
t v

∗′
t , where v∗

t = vt − cvt−1,
where c = (Σvt−1v

′
t−1)−1(Σvt−1v

′
t ), and the

cross-covariance matrix, S0
12 = (1/T )Σ(r tv

∗′
t ).

Second, construct the transformed model as
W∗

Jt = WJt − s(J)
120(S0

22)−1vt
′, where s(J)

120 de-
notes the Jth row of S12

0 . Third, apply NSUR
to the transformed system of cointegrated
regressions.
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Table 2. Individual and Joint Tests of Spuri-
ous Regressions

Relative Price
Regression Tk

1. Cereal −4.491(8)
2. Bakery −4.415(8)
3. Beef NC
4. Pork −3.544(8)
5. Other meat −3.318(5)
6. Poultry −3.561 (7)
7. Fish and seafood −2.436 (8)
8. Fluid −3.471 (3)
9. Butter NC

10. Cheese −2.390 (7)
11. Ice cream −4.658 (2)
12. Fresh fruit −4.935(4)
13. Fresh vegetables NC
14. Processed fruits and vegetables −5.989 (8)
15. Sugar and sweets −4.600 (8)
16. Fats and oils −4.771 (5)
17. Nonalcoholic beverages −3.273 (6)
18. Eggs NC
19. Miscellaneous foods −3.473 (8)
10% critical values:

T∗ = −5.7381 (individual tests)
T∗ = 6.9521 ( family-wise test)

Notes: The entries (Tk) are Engle–Granger tests of the null that the kth
relative price and the vector of composite group prices and income are
not cointegrated. The entries are augmented Dickey–Fuller tests of I (1)
residuals formed from regressing the kth relative price on each of the
seven integrated group price indices (see table 1), income, a constant, and
a time trend. The number of lagged first difference residuals included (in
the residual regression) is reported in parentheses, and is determined by
SHAZAM 7.0. The 0.10 critical values reported for the individual tests are
based on seventy-six observations and eight integrated explanatory variables,
so that k = 9 in MacKinnon. The 0.10 family-wise critical value of 6.952 is
based on seventy-six observations, k = 9, and the (0.10/15) critical point.

Table 3 presents estimates of composite con-
sumer demand elasticities. They are based
on a rank three Θ matrix. The results yield
relatively large estimates of income elastici-
ties, although such results may be attributed
to the very broad definitions of the compos-
ites. The results suggest the fruits and veg-
etable composite is the most price elastic and
meat is the least price elastic. Except for the

Table 3. Composite Demand Elasticities

Cereal Fruits Other
& Bakery Meats Dairy & Vegs Food Away Income

(R1) (R2) (R3) (R4) (R5) (R6) Nonfood (z)

Cereal and bakery −0.606 0.036 −0.396 0.399 −0.673 0.182 −0.293 1.351
Meat 0.014 −0.605 0.257 −0.072 0.180 −0.736 −0.849 1.810
Dairy −0.547 0.589 −0.861 −0.143 −1.260 1.321 −1.346 2.246
Fruits and vegetables 0.357 −0.108 −0.089 −0.979 −0.237 0.497 −1.042 1.601
Other food (home) −0.337 0.176 −0.461 −0.125 −0.741 0.656 −0.207 1.038
Food away 0.049 −0.337 −0.276 0.154 0.344 −0.692 1.173 1.379
Nonfood 0.001 −0.002 −0.002 −0.008 −0.003 −0.045 −0.864 0.924

meat composite, the results suggest the food-
away-from-home composite is a gross substi-
tute for the at-home food groups, and nonfood
is a gross complement for all at-home food
groups.

At this point we note that the above es-
timates are based on consumer-reported ex-
penditure data rather than USDA’s computed
farm-based commercial disappearance data
(e.g., Eales and Unevehr). The problem with
using the commercial disappearance data in
consumer demand analysis is these data pro-
vide information only on the physical amount
of farm components in food. By ignoring the
value that consumers place on the mix of food
products, commercial disappearance ignores
the fact that the mix of food products pur-
chased has changed over time. Nelson shows
that the CCT permits composite demand to be
decomposed into a physical component and a
quality component, where quality is a value
measure of the mix of products purchased and
where variations in quality reflect changes in
the mix of products purchased over time. Reed,
Levedahl, and Clark show this same decompo-
sition follows from the GCCT, and provide ev-
idence that consumers respond to changes in
prices and income mostly by adjusting the mix
of products purchased. Hence using commer-
cial disappearance data as a proxy for food de-
mand omits this important aspect of consumer
demand for food.

Finally, there is interest in checking for
weak separability. Under weak separability,
the model errors of a composite demand sys-
tem are not correlated with relative prices.
Because the model errors are presumed to be
stationary, a test for weak separability reduces
to a test that the model errors are uncorrelated
with stationary elements of �. Table 1 suggests
the relative prices for beef (�b), butter (�bu),
fresh vegetables (�v), and eggs (� e) are station-
ary. If uk denotes the residual of kth composite
demand equation, we estimate
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Table 4. Weak Separability Tests

Groups W P (W > � 2)

1. Cereal and bakery 59.37 <0.0001
2. Meat 51.73 <0.0001
3. Dairy 36.65 <0.0001
4. Fruit and vegetables 26.62 <0.0001
5. Other food at home 66.59 <0.0001
6. Food away 13.52 0.036

Notes: The entries (W) are Wald statistics associated with the null that
relative prices are not related to the composite model errors. Each statistic
is based on equation (13) in the text, and therefore each is distributed
chi-square with six degrees of freedom. The third column reports proba-
bilities of observing the reported level of W under the null of weak separability.

ukt = 	ko + 	k1�bt + 	k2�but

+ 	k3�vt + 	k4�et, +	k5(�bt�but)

+ 	k6(�vt �et) + �ktj.

(13)

for k = 1, . . . , M − 1 and test the null 	k1 =
	k2 = 	k3 = 	k4 = 	k5 = 	k6 = 0. The results
presented in table 4 suggest this aggregation
scheme cannot be based on weakly separable
preferences.

Conclusions

One part of Lewbel’s message is that the Gen-
eralized Composite Commodity Theorem may
support a number of different aggregation
schemes. Another part suggests this theorem
could lead to improved estimates of consumer
demand elasticities. This article represents an
attempt to address both of these points.

Our results agree with previous studies that
suggest data used in food demand analysis are
generated from unit root processes so that tests
for valid aggregation may reduce to tests for
spurious regressions. We build on these studies
by applying multi-comparison procedures to
multiple rather than simple regression models.
This simplifies testing and leads to a straight-
forward test of the aggregation scheme. More-
over, we choose a popular form to describe
this composite food demand system, and show
it can be treated as an estimable nonlinear sys-
tem of cointegrated regressions. The demand
elasticities for six broadly defined food cate-
gories appear to be reasonable, and tests reject
weak separability.

Other results not reported here suggest the
elementary food products chosen for this study
could have been aggregated differently. While
this may be symptomatic of the low power
of residual tests for spurious regression, they

may also reflect the notion that the stochas-
tic nature of the GCCT may support numer-
ous aggregation schemes. This would suggest,
for example, that demand and market analysis
applied to nutrition-based aggregates such as
USDA’s food pyramid applies equally well to
analysis based on the more traditional farm-
based aggregates.

[Received June 2001;
accepted May 2004.]
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